Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lotf A. Saghatforoush, ${ }^{\text {a }}$ Moayad Hossaini Sadr, ${ }^{\text {b }}$ William Lewis, ${ }^{\text {c }}$ Jan Wikaira, ${ }^{\text {c }}$ Ward T. Robinson ${ }^{\text {c }}$ and Seik Weng $\mathbf{N g}^{\mathbf{d} *}$

${ }^{\text {a }}$ Department of Chemistry, Payame Noor University, Khoy, Iran, ${ }^{\mathbf{b}}$ Department of Chemistry, Tarbiat Moallem University of Azarbaijan, Tabriz, Iran, ${ }^{\text {c }}$ Department of Chemistry, University of Canterbury, Christchurch, New Zealand, and ${ }^{\text {d Department }}$ of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=113 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.039$
$w R$ factor $=0.107$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see
http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

[5-Bromo- N-(2-pyridylethylsulfanylethyl)-salicylideneiminato- $\left.\kappa^{4} N, N^{\prime}, O, S\right]$ copper(II) perchlorate

The Cu atom in the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{OS}\right)\right]$ ClO_{4}, exists in a distorted square-planar geometry. The compound exists as discrete ions.

Comment

The structural chemistry of the metal complexes derived from tetradentate Schiff bases that are synthesized by condensing two formula units of salicyldehyde with one formula unit of a diamine has been documented for a wide range of metal systems. The large number of such Schiff bases contrasts with only a few that have been prepared from salicyladehyde (which provides the O and N donor sites) and an amine that possesses both an N -heterocycle and a thioether linkage (and which provides the S and N donor sites), owing to the relative difficulty of obtaining such amines. One example of such a metal complex, [$N-2-\left[\left(5^{\prime}-\right.\right.$ methylimidazolyl-4'-yl)methylthio]ethylsalicylideneiminato]copper perchlorate, has the metal atom in a square-planar geometry which is distorted towards a tetrahedron, owing to a weaker $\mathrm{Cu}-\mathrm{S}$ bond (Bailey et al., 1988). The present study of the title copper complex of (2-pyridylethylthio)ethyl-5-bromosalicylideneimine, (I), continues a recent structural study of the nickel monoperchlorate complex of the deprotonated iodo analogue of the ligand. In that compound, the metal atoms in the two independent cations showed a distorted square-planar coordination (Daneshvar et al., 2003).

(I)

The Cu atom in (I) also displays such a distorted geometry (Fig. 1). The distortion arises from the somewhat long $\mathrm{Cu}-\mathrm{S}$ bond [2.332 (1) Å], but there are no significant differences in bond distances between the present Cu complex and the reported Ni complexes. There are no important interactions between the Cu atom and the perchlorate anion.

Experimental

To a stirred solution of 5-bromosalicylaldehyde $(0.20 \mathrm{~g}, 1 \mathrm{mmol})$ in ethanol (5 ml) was added a solution of 1-(2-pyridyl)-3-thia-5-aminopentane ($0.18 \mathrm{~g}, 1 \mathrm{mmol}$) in ethanol (5 ml). The yellow solution was heated for 1 h to afford a yellow solid. The compound was collected and recrystallized from a chloroform-ethanol ($1: 2 \mathrm{v} / \mathrm{v}$) mixture in nearly quantitative yield (m.p. 342 K). Analysis, calculated for
\qquad

Figure 1
A view of the structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 75% probability level and H atoms are shown as small spheres of arbitrary radii.
$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C} 52.60$, H 4.69, N 7.66\%; found: C 52.50 ; H 4.70; $\mathrm{N} 7.60 \%$. A solution of this organic reagent $(0.37 \mathrm{~g}, 1 \mathrm{mmol})$ in absolute ethanol $(10 \mathrm{ml})$ was treated with a methanol solution $(1 \mathrm{ml})$ of $1 M$ sodium hydroxide. Copper perchlorate hexahydrate $(0.37 \mathrm{~g}$, $1 \mathrm{mmol})$ was added to the solution to give a dark-green solution. The solution was briefly heated. The crystals of (I) which separated were collected and purified by recrystallization from methanol.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{OS}\right)\right] \mathrm{ClO}_{4}$	$D_{x}=1.917 \mathrm{Mg} \mathrm{m}^{-3}$ $M_{r}=527.27$
Monoclinic, $P 2_{1} / n$	Cell paradiation
$a=9.9542(6) \AA$	reflections
$b=8.8479(6) \AA$	$\theta=2.5-26.4^{\circ}$
$c=21.223(1) \AA$	$\mu=3.68 \mathrm{~mm}^{-1}$
$\beta=102.263(1)^{\circ}$	$T=113(2) \mathrm{K}$
$V=1826.5(2) \AA^{3}$	Plate, blue
$Z=4$	$0.45 \times 0.43 \times 0.15 \mathrm{~mm}$
Data collection	
Siemens $P 4$ diffractometer with	3657 independent reflections
\quad CCD area-detector	2645 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.057$
Absorption correction: multi-scan	$\theta_{\max }=26.5^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2001)	$h=-12 \rightarrow 12$
$\quad T_{\text {min }}=0.145, T_{\text {max }}=0.576$	$k=-11 \rightarrow 11$
9902 measured reflections	$l=-23 \rightarrow 26$

$\left[\mathrm{Cu}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{OS}\right)\right] \mathrm{ClO}_{4}$
$M_{r}=527.27$
Monoclinic, $P 2_{\mathrm{a}_{1}} / n$
$a=9.9542$ (6) \AA
$b=8.8479$ (6) \AA
$c=21.223(1) \AA$
$\beta=102.263$ (1) ${ }^{\circ}$
$V=1826.5(2) \AA^{3}$
$Z=4$
$D_{x}=1.917 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5071
reflections
$\theta=2.5-26.4^{\circ}$
$=3.68 \mathrm{~mm}$
$T=113$ (2) K
Plate, blue
$0.45 \times 0.43 \times 0.15 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer with
CCD area-detector
φ and ω scans
Absorption correction: multi-scan
$T_{\text {min }}=0.145, T \quad=0.576$
9902 measured reflections

3657 indepen $I>2 \sigma(I)$ 2645 reflections with $I>2 \sigma(I)$ $R_{\text {int }}-265^{\circ}$
$\theta_{\text {max }}=26.5^{\circ}$ $k=-11 \rightarrow 11$ $l=-23 \rightarrow 26$

Refinement

Refinement on F^{2}
H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.107$
$S=0.99$
3657 reflections
244 parameters
Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.904(3)$	$\mathrm{Cu} 1-\mathrm{O} 1$	$1.866(3)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.966(3)$	$\mathrm{Cu} 1-\mathrm{S} 1$	$2.332(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$96.2(1)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1$	$92.9(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$157.4(1)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{S} 1$	$91.7(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{S} 1$	$87.5(1)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{S} 1$	$157.9(1)$

The aromatic $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ and aliphatic $(\mathrm{C}-\mathrm{H}=0.99 \AA) \mathrm{H}$ atoms were positioned geometrically, and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The final difference Fourier map had a large peak near the Br atom (at $0.79 \AA$). and the deepest hole was $0.13 \AA$ from the Cu atom

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Research Office of Tarbiat Moallem University, the University of Canterbury and the University of Malaya for supporting this work.

References

Bailey, N. A., Bastida, R., Fenton, D. E., Lockwood, S. J. \& McLean, C. H. (1988). J. Chem. Soc. Dalton Trans. pp. 839-845.

Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Daneshvar, N., Saghatforoush, L. A., Khandar, A. A. \& Entezami, A. A. (2003). Acta Chim. Slov. 50, 207-222.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2004 International Union of Crystallography

